

1	Title
2	
3	Eddy Covariance Evaluation of Ecosystem Fluxes at a Temperate Saltmarsh in Victoria,
4	Australia Shows Large CO ₂ Uptake
5	
6	Authors
7	
8	Ruth Reef ¹ ,
9	Edoardo Daly ^{2,3} ,
10	Tivanka Anandappa ¹ ,
11	Eboni-Jane Vienna-Hallam ¹ ,
12	Harriet Robertson ¹ ,
13	Matthew Peck ¹ ,
14	Adrien Guyot ^{4,5}
15	
16	Affiliations
17	
18	1 School of Earth, Atmosphere and Environment, Monash University, VIC 3800, Australia
19	2 Department of Civil Engineering, Monash University, VIC 3800, Australia
20	3 WMAwater, Brisbane, QLD 4000, Australia
21	4 Atmospheric Observations Research Group, The University of Queensland, Brisbane,
22	Australia
23	5 Australian Bureau of Meteorology, Melbourne, Australia
24	
25	Corresponding Author
26	
27	Associate Professor Ruth Reef
28	School of Earth Atmosphere and Environment
29	Monash University
30	9 Rainforest Walk, Clayton VIC 3800
31	Australia
32	Email: ruth.reef@monash.edu

33	Ph: +61 3 9905 8309
34	
35	
36	Key Points
37	
38	This is the first study using eddy covariance to measure CO_2 fluxes at an Australian
39	temperate saltmarsh, revealing temperature and light limitations to CO_2 uptake.
40	
41	CO_2 fluxes varied seasonally; growing season net ecosystem productivity was 10.54 g CO_2 m ⁻
42	² day ⁻¹ , dropping to 1.64 g CO ₂ m ⁻² day ⁻¹ in winter.
43	
44	Annual productivity at the French Island saltmarsh is estimated at 753 g C m $^{\text{-2}}$ y $^{\text{-1}}$, surpassing
45	global saltmarsh estimates but below global mangrove averages.
46	
47	
48	
49	Abstract
50	
51	Recent studies highlight the important role of vegetated coastal ecosystems in atmospheric
52	carbon sequestration. Saltmarshes constitute 30% of these ecosystems globally and are the
53	primary intertidal vegetation outside the tropics. Eddy covariance (EC) is the main method
54	
	for measuring biosphere-atmosphere fluxes, but its use in coastal environments is rare. At
55	for measuring biosphere-atmosphere fluxes, but its use in coastal environments is rare. At an Australian temperate saltmarsh site on French Island, Victoria, we measured $\rm CO_2$ and
55 56	for measuring biosphere-atmosphere fluxes, but its use in coastal environments is rare. At an Australian temperate saltmarsh site on French Island, Victoria, we measured CO_2 and water gas concentration gradients, temperature, wind speed and radiation. The marsh was
55 56 57	for measuring biosphere-atmosphere fluxes, but its use in coastal environments is rare. At an Australian temperate saltmarsh site on French Island, Victoria, we measured CO_2 and water gas concentration gradients, temperature, wind speed and radiation. The marsh was dominated by a dense cover of <i>Sarcocornia quinqueflora</i> . Fluxes were seasonal, with minima
55 56 57 58	for measuring biosphere-atmosphere fluxes, but its use in coastal environments is rare. At an Australian temperate saltmarsh site on French Island, Victoria, we measured CO ₂ and water gas concentration gradients, temperature, wind speed and radiation. The marsh was dominated by a dense cover of <i>Sarcocornia quinqueflora</i> . Fluxes were seasonal, with minima in winter when vegetation is dormant. Net ecosystem productivity (NEP) during the growing
55 56 57 58 59	for measuring biosphere-atmosphere fluxes, but its use in coastal environments is rare. At an Australian temperate saltmarsh site on French Island, Victoria, we measured CO ₂ and water gas concentration gradients, temperature, wind speed and radiation. The marsh was dominated by a dense cover of <i>Sarcocornia quinqueflora</i> . Fluxes were seasonal, with minima in winter when vegetation is dormant. Net ecosystem productivity (NEP) during the growing season averaged 10.54 g CO ₂ m ⁻² day ⁻¹ decreasing to 1.64 g CO ₂ m ⁻² day ⁻¹ in the dormant
55 56 57 58 59 60	for measuring biosphere-atmosphere fluxes, but its use in coastal environments is rare. At an Australian temperate saltmarsh site on French Island, Victoria, we measured CO ₂ and water gas concentration gradients, temperature, wind speed and radiation. The marsh was dominated by a dense cover of <i>Sarcocornia quinqueflora</i> . Fluxes were seasonal, with minima in winter when vegetation is dormant. Net ecosystem productivity (NEP) during the growing season averaged 10.54 g CO ₂ m ⁻² day ⁻¹ decreasing to 1.64 g CO ₂ m ⁻² day ⁻¹ in the dormant period, yet the marsh remained a CO ₂ sink due to some sempervirent species. Ecosystem
55 56 57 58 59 60 61	for measuring biosphere-atmosphere fluxes, but its use in coastal environments is rare. At an Australian temperate saltmarsh site on French Island, Victoria, we measured CO ₂ and water gas concentration gradients, temperature, wind speed and radiation. The marsh was dominated by a dense cover of <i>Sarcocornia quinqueflora</i> . Fluxes were seasonal, with minima in winter when vegetation is dormant. Net ecosystem productivity (NEP) during the growing season averaged 10.54 g CO ₂ m- ² day- ¹ decreasing to 1.64 g CO ₂ m- ² day- ¹ in the dormant period, yet the marsh remained a CO ₂ sink due to some sempervirent species. Ecosystem respiration rates were lower during the dormant period compared with the growing season
55 56 57 58 59 60 61 62	for measuring biosphere-atmosphere fluxes, but its use in coastal environments is rare. At an Australian temperate saltmarsh site on French Island, Victoria, we measured CO ₂ and water gas concentration gradients, temperature, wind speed and radiation. The marsh was dominated by a dense cover of <i>Sarcocornia quinqueflora</i> . Fluxes were seasonal, with minima in winter when vegetation is dormant. Net ecosystem productivity (NEP) during the growing season averaged 10.54 g CO ₂ m ⁻² day ⁻¹ decreasing to 1.64 g CO ₂ m ⁻² day ⁻¹ in the dormant period, yet the marsh remained a CO ₂ sink due to some sempervirent species. Ecosystem respiration rates were lower during the dormant period compared with the growing season (1.00 vs 1.77 µmol CO ₂ m ⁻² s ⁻¹) with a slight positive relationship with temperature. During
55 56 57 58 59 60 61 62 63	for measuring biosphere-atmosphere fluxes, but its use in coastal environments is rare. At an Australian temperate saltmarsh site on French Island, Victoria, we measured CO ₂ and water gas concentration gradients, temperature, wind speed and radiation. The marsh was dominated by a dense cover of <i>Sarcocornia quinqueflora</i> . Fluxes were seasonal, with minima in winter when vegetation is dormant. Net ecosystem productivity (NEP) during the growing season averaged 10.54 g CO ₂ m ⁻² day ⁻¹ decreasing to 1.64 g CO ₂ m ⁻² day ⁻¹ in the dormant period, yet the marsh remained a CO ₂ sink due to some sempervirent species. Ecosystem respiration rates were lower during the dormant period compared with the growing season (1.00 vs 1.77 µmol CO ₂ m ⁻² s ⁻¹) with a slight positive relationship with temperature. During the growing season, fluxes were significantly influenced by light levels, ambient

- estimate the annual NEP budget at this marsh to be 753 (\pm 112.7) g C m⁻² y⁻¹ which is similar
- 66 to carbon uptake by temperate saltmarshes in Europe and within the range measured at
- 67 some US saltmarshes. This value is higher than the value hypothesised for global
- 68 saltmarshes of 382 g C m⁻² y⁻¹ but is only half the mean value estimated for global
- 69 mangroves.
- 70
- 71 EGUsphere Topics
- 72 Emissions, Marine and Freshwater Biogeosciences, Earth System Biogeosciences
- 73
- 74 Short Summary
- 75
- 76 Studies show that saltmarshes excel at capturing carbon from the atmosphere. In this study,
- 77 we measured CO₂ flux in an Australian temperate saltmarsh on French Island. The
- 78 temperate saltmarsh exhibited strong seasonality. During the warmer growing season, the
- real saltmarsh absorbed on average 10.5 grams of CO_2 from the atmosphere per m² daily. Even
- 80 in winter, when plants were dormant, it continued to be a CO₂ sink, albeit smaller. Cool
- 81 temperatures and high cloud cover inhibit carbon sequestration.
- 82
- 83
- 84
- 85

86	1.	Introduction
86	1.	Introduction

88	Despite their relatively small global footprint of 54,650 km ² (Mcowen et al., 2017), salt
89	marshes provide a range of ecosystem services, including shoreline protection (Shepard et
90	al., 2011), nutrient uptake, nursery grounds for fish populations (Whitfield, 2017) as well as
91	functioning as significant carbon sinks through CO_2 uptake and storage in their organic rich
92	sediments (McLeod et al., 2011). These 'blue carbon' habitats are recognised for their
93	significant contribution to the global carbon cycle, as coastal wetlands more broadly are
94	estimated to have accumulated more than a quarter of global organic soil carbon (Duarte,
95	2017).
96	
97	Saltmarshes are a widely distributed intertidal habitat but are floristically divergent globally
98	(Adam, 2002), such that commonalities in function and form do not extend across
99	biogeographic realms. US saltmarshes, for example, are extensively dominated by a single
100	grassy species, Spartina alterniflora, as opposed to the dominance of C_3 Chenopodioideae
101	species in the southern hemisphere (Adam, 2002). Temperate saltmarshes occupy a
102	latitudinal range spanning from approximately 30° to 60° (Mcowen et al., 2017) and are
103	most commonly found along protected coastlines such as bays, estuaries, and lagoons,
104	where they are sheltered from the full force of wave action (Mitsch and Gosselink, 2000). In
105	the Southern Hemisphere, temperate saltmarshes have a strong Gondwanan element with
106	high floristic similarity among the marshes of New Zealand, the southernmost coasts of
107	South America and South Africa and the southern coastlines of Australia (Adam, 1990).
108	These marshes are often associated with extensive seagrass meadows and mudflats, and in
109	parts of their range, mangroves, forming complex coastal mosaics (Huxham et al., 2018).
110	Saltmarshes have been heavily degraded across their range, and it is estimated that perhaps
111	up to 50% of the global saltmarsh area has been lost since 1900 (Gedan et al., 2009),
112	primarily due to land use change.
113	
114	Seasonality plays a major role in the functioning of temperate saltmarshes (Ghosh and
115	Mishra, 2017). These ecosystems experience distinct growing and dormant seasons,
116	primarily driven by temperature, light availability, and precipitation patterns (Adam, 2000).

During the growing season (typically spring and summer), increased temperatures and

118	longer daylight hours stimulate plant growth, photosynthetic activity, and decomposition
119	processes. Photosynthesis typically outpaces decomposition during this period, resulting in
120	the temperate saltmarsh acting as a net CO_2 sink (Chmura et al., 2003). Conversely, the
121	dormant season (usually fall and winter) is characterized by cooler temperatures and
122	shorter days (Adam, 2000; Howe et al., 2010). These factors lead to reduced plant growth
123	and photosynthetic activity (Adam, 2000) and while decomposition processes also slow
124	down due to cooler temperatures, CO_2 release through decomposition often exceeds CO_2
125	uptake during this period (Artigas et al., 2015).
126	
127	Gross primary production (GPP) of saltmarshes is the total photosynthetic flux of CO_2 from
128	the atmosphere to the land surface, while respiration (R_e) leads to a CO_2 flux directed back
129	to the atmosphere. The difference between these two fluxes is the net ecosystem exchange
130	(NEE). Saltmarsh ecosystems can act as both sources and sinks of carbon dioxide (CO ₂),
131	influencing atmospheric CO $_2$ concentrations (Chmura et al., 2003). However, quantifying
132	their net exchange remains challenging (Lu et al., 2017) hindering their effective inclusion in
133	Earth System Models (Ward et al., 2020) and confounding the incorporation of saltmarsh
134	restoration in emission reduction targets. Eddy covariance (EC) provides a powerful method
135	for near-continuous, high-frequency monitoring of gas exchange between a vegetated
136	surface and the atmosphere (Baldocchi, 2003), enabling the determination of net ecosystem
137	exchange (NEE) of CO_2 , and identifying the forcings that determine how CO_2 fluxes will
138	respond to global climate change (Borges et al., 2006; Cai, 2011).
139	
140	Previous EC studies in coastal saltmarshes are limited to the Northern Hemisphere, in sites
141	in the USA (e.g. Hill and Vargas, 2022; Kathilankal et al., 2008; Moffett et al., 2010; Nahrawi
142	et al., 2020; Schäfer et al., 2019), France (Mayen et al., 2024), Japan (Otani and Endo, 2019)
143	and China (Wei et al., 2020). The NEE values from these studies indicate that there is high
144	inter-site (as well as interannual, Erickson et al., (2013)) variability in carbon dynamics of
145	saltmarshes, with a link to species types, salinity, hydrology (Moffett et al., 2010; Nahrawi et
146	al., 2020), site specific biochemical conditions (Seyfferth et al., 2020) and latitude (Feagin et
147	al., 2020). While generally considered important carbon sinks (e.g. ranging between 130 to
148	775 g C m $^{-2}$ yr $^{-1}$ in the USA, according to Kathilankal et al. (2008) and Wang et al,(2016)

149 respectively) and globally hypothesised to average 382 g C m $^{-2}$ y $^{-1}$ (Alongi, 2020), some EC

studies revealed saltmarshes to be net sources of CO₂ to the atmosphere (Vázquez-Lule and 150 151 Vargas, 2021) especially in temperate saltmarshes that experience long dormant periods. 152 The aim of this study is to estimate CO_2 and water fluxes in a temperate saltmarsh in 153 154 Victoria, southern Australia, to better characterise the effect of seasonality and 155 environmental variables on the saltmarsh CO₂ budgets. This is the first study in an Australian 156 coastal saltmarsh where CO₂ fluxes are estimated using the EC method. 157 158 2. Methods 159 160 2.1 Site Description 161 162 Ecosystem flux measurements were collected at the Tortoise Head Ramsar coastal wetland 163 on French Island, Victoria (38.388°S, 145.278°E, Fig. 1) within the Western Port embayment. French Island is within the Cfb climate zone (temperate oceanic climate) and experiences 164 165 distinct seasonal variations in temperature and precipitation. Long term (30 year) climate data averaged from the nearby Cerberus Station (Australian Bureau of Meteorology, site 166 86361) indicated that summers, spanning from December through February, are generally 167 168 mild to warm, with maximum temperatures typically ranging from 17°C to 25°C although 169 occasional heatwaves lead to temporary spikes in temperature that can exceed 30°C. 170 Winters, from June to September, are cooler, with maximum temperatures ranging 171 between 7°C and 14°C and a mean minimum temperature of 6°C. Frost is infrequent due to 172 maritime influence, though crisp mornings below 0°C occur 10% of the time in winter. Rainfall, evenly distributed throughout the year, averages ca. 715 mm y^{-1} , although in 2020 173 174 the site experienced higher than average rainfall (860 mm y⁻¹). The island is exposed to weather patterns influenced by the Southern Ocean and Bass Strait, leading to occasional 175 176 storm systems, particularly in winter, bringing gusty winds and increased precipitation. 177 Western Port has semi-diurnal tides with a range of nearly 3 m, resulting in wide intertidal 178 flats occupied by mangroves of the species Avicennia marina and saltmarshes. 179

181

182 Figure 1: a) The location of French Island along the Bass Strait coast of Australia, and b) The 183 location of the flux tower on French Island as well as the nearby Cerberus meteorological station (Bureau of Meteorology, Australia), © Google Earth. c) An image of the saltmarsh 184 185 within the flux tower footprint during the growing season (with the tower and the author in the background), taken in February 2020 by Prudence Perry. d) an image of the saltmarsh 186 187 during the dormant period, taken at the same location in September 2020 by Ruth Reef. 188

189 The site at French Island is dominated by an extensive temperate coastal saltmarsh 190 community that is a particularly good natural representation of a broader biogeographic saltmarsh grouping which covers an area of ca. 7000 ha along Victoria's central coast 191 192 embayments (Navarro et al., 2021). While the wetland at the site is a saltmarsh-mangrove-193 seagrass wetland system, the footprint of the flux tower was limited to the saltmarsh alone, 194 which extends more than a kilometre from the shoreline in places. This geography provided 195 the critical horizontally homogenous area with flat terrain required for ecosystem flux 196 measurements. Floristically this saltmarsh is species poor, dominated by Sarcocornia

197	quingeflora. Stands of Tecticornia arbuscula are common in this saltmarsh, while Atriplex
198	cinerea, Suaeda australia and Distichis distichophylla can be prevalent depending on
199	elevation and soil drainage conditions. Sarcocornia quingeflora is a perennial succulent and
200	at the temperate ranges of its distribution it has a distinct growing season from October to
201	May (Fig. 1c) when the stems turn red, followed by a woody and fibrous dormant period
202	during the colder months of June through September (Fig. 1d). The height of the dominant
203	vegetation ranged between 0.3-0.6 m.
204	
205	2.2 Data Collection and Analysis
206	
207	Eddy covariance measurements were made between November 2019 and August 2021
208	capturing both the saltmarsh growing season (October-March) as well as a dormant period
209	(April-September). An array of standard micro-meteorological instruments included a 3-
210	dimensional sonic anemometer (CSAT3, Campbell Scientific, USA), an open-path infra-red
211	carbon dioxide (CO $_2$) gas and water vapour (H $_2$ O) analyser (Li-7500, Li-Cor, USA) and 2 data-
212	loggers. The tower was powered by a solar array with two accompanying 12V DC storage
213	batteries. The sonic anemometer was mounted 2.3 m above ground. The $CO_2/H2O$ gas
214	analyser was mounted 0.11 m longitudinally displaced from the anemometer. A CR3000
215	datalogger (Campbell Scientific, USA), recorded the Li-7500, anemometer, short- and long-
216	wave radiation (CNR4, Klip & Zonen, the Netherlands), air temperature and humidity (083E,
217	Met One, USA) readings at 10 Hz frequency. Due to the location of the site in the Bass Strait
218	(a region that experiences regular winter storms, high wind speeds and higher than national
219	average cloud cover) the tower sustained damage due to winter storms several times during
220	the deployment, as well as suffered periods of poor power supply due to short day lengths
221	and high cloud cover; this was exacerbated by poor accessibility to the remote location
222	during COVID-19 travel restrictions. The analysis, thus focused on extended periods of
223	continuous daily records and periods with large gaps in the dataset were removed.
224	
225	Ecosystem fluxes were calculated for 30 min intervals using Eddy Pro software v.7 (LI-COR
226	Inc., USA) Express Mode protocols. This processing step includes coordinate axis rotation
227	correction, trend correction, data synchronisation, statistical tests for quality, density
228	corrections and spectrum corrections. As part of this step, flux quality flags were assigned to

229	the calculated CO_2 fluxes using the 0–2 flag policy 'Mauder and Foken 2004', based on the
230	steady state test and the developed turbulent conditions test. Only data that met the
231	criteria of being in quality class 0 ('best quality fluxes') for CO_2 flux were chosen for further
232	analysis. We further removed anomalous data points defined as values that exceed four
233	standard deviations from the mean CO_2 flux; this resulted in the additional loss of ca. 1% of
234	the dataset. Gap filling was not applied. Additional filtering was applied to night-time data
235	due to known weak convection at night, thus CO_2 flux data during periods of atmospheric
236	stability, i.e. when night friction wind velocities (u*) were below 0.2 m s ⁻¹ , were excluded.
237	This resulted in a dataset of 674 day-time and 606 night-time flux measurements during the
238	dormant period and 4124 day-time and 3020 night-time flux measurements for the growing
239	period. The growing season dataset included 90 days with 85% or more flux data coverage,
240	while the dormant season dataset included 18 days and these days were used for 24-hour
241	flux integrations.
242	
243	Half-hourly average CO_2 flux was measured in $\mu mol\ m^{-2}\ s^{-1}$, with positive fluxes indicating a
244	flux direction from the Earth's surface to the atmosphere. Net ecosystem exchange (NEE)
245	was defined as the net flux of CO_2 from the atmosphere to the marsh and was often
246	negative during daytime, indicating that Gross Primary Productivity (GPP) was larger than
247	ecosystem respiration (R_e). Evapotranspiration (ET) was calculated by Eddy Pro as the ratio
248	between the latent heat flux (LE) and latent heat of vaporisation (λ). Ecosystem water use
249	efficiency (WUEe) was then expressed as the ratio between daytime net ecosystem
250	productivity in g CO ₂ m ⁻² h^{-1} and evapotranspiration in mm h^{-1} .
251	
252	A two-dimensional footprint estimation was provided according to the simple footprint
253	parameterisation described in Kljun et al. (2015) calculating the ground position of the
254	cumulative fraction of flux source contribution by distance for each 30-minute interval. We
255	assessed the short-term effects of environmental factors on CO_2 fluxes at a half-hourly time
256	scale (e.g. the effects of light, air temperature and vapour pressure deficit) using a series of
257	non-linear or linear models. These analyses were limited to the growing season, when the
258	plants were actively photosynthesising. The integrated CO_2 and H_2O fluxes over time (i.e.,
259	the daily sum of CO_2 or H_2O flux) were calculated for days with complete records (data

260	density>80%) as the area under the curve for each 24-hour period according to the
261	trapezoid rule. All post-processing and statistical analyses were performed in R 4.3.2.
262	
263	Because of the large data gaps, it was not possible to model the partition of the NEE in GEP
264	and Re using common partitioning methods (Lasslop et al., 2010). For simplicity, it was
265	assumed that NEE at night coincided with $R_{e}. \ R_{e}$ was corrected for temperature effects on
266	respiration using the linear slope of the relationship between night-time NEE and
267	temperature. For the CO_2 budget, Net Ecosystem Production (NEP), defined as NEP=-NEE,
268	and Gross Ecosystem Production (GEP), defined as GEP=-GPP, were used.
269	
270	3. Results
271	
272	The observations were divided into a growing season and a dormant season to reflect the
273	seasonal phenology of the dominant vegetation type within the flux tower footprint, which
274	has a relatively short growing season during the summer. During the growing season, mean
275	temperature averaged 22.3°C. Several heatwaves occurred during this period, with
276	temperatures exceeding 40°C on a few occasions in 2019. The dormant season was
277	significantly colder and windier, with frequent southerly winds (Fig. 2a). Footprint models
278	showed a slight variation in flux source between the two seasons, although in both cases the
279	size of the footprint and the vegetation composition within the footprint was similar (Figs.
280	2b and 2c), but the shape was skewed to the north during winter due to the prevalent
281	southerly winds in that season (Fig. 2a). 70% of the flux measurement source was from
282	within 50 m of the tower, while the maximum length of the source location was 73 m.
283	

285

286 Figure 2: a) The minimum and maximum daily temperature recorded at the Cerberus 287 meteorological station (Bureau of Meteorology, Fig. 1b) during 2019-2021. The marsh 288 growing (Nov-Mar) and dormant (Aug-Sep) periods observed during this study are 289 highlighted. A corresponding wind rose diagram summarises the wind speeds and directions 290 measured at the tower site during the observation periods. The flux source footprint 291 surrounding the tower during the dormant season (b) and the growing season (c) shows the 292 cumulative flux source contribution to the flux measurements, with the outer red line 293 representing the distance by which 90% of the calculated flux is sourced and the other 294 isolines from the tower outwards correspond to 10%, 20%, 40%, 60% and 80% of the flux. 295 296 The growing season dataset included 90 days with 80% or more flux data coverage, while 297 the dormant season dataset included 18 days. There was a strong temporal variability in net 298 ecosystem exchange (NEE) across both short (daily) and long (seasonal) temporal scales (Fig. 299 3). Daytime fluxes were defined as flux points where the global radiation values in the flux averaging half-hour interval were >12 W m⁻². At the diurnal scale, saltmarsh NEE were 300

- 301 negative mostly during the day and positive mostly during the night and ranged between -
- 302 19.1 and 10.86 μ mol m⁻² s⁻¹ across the measurement periods.

303

304

305

Figure 3: A time series of half-hourly measurements of CO₂ flux between a temperate
saltmarsh and the atmosphere measured by eddy covariance during the marsh growing
season (a) and the dormant season (b). Blue and grey points indicate measurements taken
during day-time and night-time respectively. Positive fluxes indicate a direction of flux from
the Earth surface to the atmosphere.

- 312 Flux rates varied across the day, with CO₂ uptake peaking at 11:00 during the growing 313 season, and later in the day (14:00) during the dormant period (Fig. 4). Ecosystem respiration rates (R_e, defined as night-time CO₂ flux) were on average (±SD) 1.77 (±1.12) 314 315 μ mol m⁻² s⁻¹ during the growing season and 1.0 (± 0.93) μ mol m⁻² s⁻¹ during the dormant period. The difference in ecosystem respiration between the growing and dormant seasons 316 317 is highly significant (t-test, p<0.01). Daytime CO₂ flux was on average (±SD) -3.53 (± 4.15) μ mol m⁻² s⁻¹ during the growing season and -0.25 (± 2.18) μ mol m⁻² s⁻¹ during the dormant 318 season. Thus, we derive that the maximum Gross Primary Productivity (GPP) of this 319 320 ecosystem from NEE and temperature-corrected Re, measured during the growing season, 321 is ca. -5.34 \pm 4.3 μ mol CO₂ m⁻² s⁻¹ (-5.53 \pm 4.45 g C m⁻² day⁻¹). Average R_e is thus estimated to 322 comprise 33% of GPP. 323 324 Mean (±SD) daily evapotranspiration was 2.48 mm (±2.79 mm) during the growing season 325 and 0.97 mm (±1.35 mm) during the dormant season (Fig. 4). Evapotranspiration peaked at 326 noon AEST during the growing season (0.26 mm h^{-1}), and later in the day (14:00 AEST) 327 during the dormant season (0.14 mm h^{-1}).
- 328

330

331 Figure 4: Mean hourly CO₂ and H₂O flux (evapotranspiration) rates during the growing 332 season (top) and the dormant season (bottom) alongside mean short wave incoming 333 radiation. Shading corresponds to 1 standard deviation around the mean. Grey plot 334 background approximates night-time periods, while light blue approximates daytime (actual 335 day length varies within each season).

336

337 The effect of some environmental forcings on daytime NEE during the saltmarsh growing

338 season were explored (Fig. 5). To distinguish this daytime-only value from the 24-hour

339 carbon balance integration, and to better highlight CO₂ uptake, NEP values are shown.

341 Short wave radiation (visible light) was a limiting factor to NEP below approximately 300 W 342 m⁻², but radiation did not reach damaging levels that would lead to a drop in NEP 343 throughout the measurement range, which reached a maximum level of ca. 800 W m⁻². 344 Unlike light, the NEP-air temperature relationship followed a Gaussian response, with the highest NEP achieved at the optimal temperature of 25.3°C with a standard deviation of 345 346 3.8°C followed by a decline in CO_2 uptake by the marsh at higher temperatures. The 347 minimum and maximum air temperatures for which modelled NEP nears zero (defined here 348 as 3 standard deviations from the mean) are 13.9°C and 36.7°C respectively. Temperature 349 also had a slight but significant positive linear relationship with ecosystem respiration (slope=0.07 μ mol CO₂ m⁻² s⁻¹ °C⁻¹, p<0.01, data not shown). 350 351 352 NEP was positively correlated with evapotranspiration during the growing season (Pearson r = 0.59, Fig.5 C). The slope of the NEP/ET relationship was 20.0, indicating an ecosystem 353 water use efficiency (WUE_e) of 0.86 g C kg⁻¹ H₂O (R^2 = 0.34, p<0.001). The response of NEP to 354 355 atmospheric vapour pressure deficit (VPD) fit a Gaussian relationship (the commonly 356 observed inverse U-shaped curve relationship in response to VPD in plants), with NEP 357 declining rapidly when VPD exceeded 2.39 kPa. The optimal range of VPD within which NEP 358 was maximised in this ecosystem was 1.92 kPa (±0.73 kPa). 359

360

Figure 5: The relationship between growing season net ecosystem CO_2 uptake (NEP, µmol $CO_2 \text{ m}^{-2} \text{ s}^{-1}$) and corresponding environmental variables. a) Shortwave radiation (visible light); black line is the Michaelis-Menten model of best fit. The coefficient of saturation is at 314 W m⁻² and maximum net productivity is 8.0 µmol $CO_2 \text{ m}^{-2} \text{ s}^{-1}$. b) Air temperature; black line is a Gaussian model of best fit with a temperature optimum at 25.3°C. c) Evapotranspiration; linear model (R² = 0.34) has a slope of 20.0. d) Vapour Pressure Deficit;

367 black line is a Gaussian model of best fit with a VPD optimum at 1.92 kPa.

368

369 When integrated over a 24-hour period, the saltmarsh is on average a CO_2 sink during all

370 canopy phenological phases (Fig. 6), although during the dormant season the sink is weaker,

371 with an average uptake of -2.42 g CO_2 m⁻² day⁻¹ (±2.54). During the growing season (defined

as the non-dormant period and thus reflecting several phenological stages), the marsh is a 372 substantial sink with a mean (±SD) daily NEP of 10.95 g CO₂ m⁻² day⁻¹ (±4.98) over a 24-hour 373 374 period (ranging between -22.8 and 4.3 g of CO_2 emission to the atmosphere m⁻² day⁻¹). The 375 daily CO₂ budget during the growing season showed some variability among days (CV=0.46, 376 Fig. 6) and days with lower average light levels (i.e. cloudy days) had a significant negative impact on the CO₂ budget (multiple linear regression, p < 0.02, $R^2 = 0.27$). Daily maximum air 377 378 temperatures did not have a significant impact on the daily CO₂ budget (p = 0.77) at this location, although NEE was significantly affected by temperature at finer temporal scales 379 (Figure 5). Assuming the dormant period spans a third of the year, we cautiously estimate 380 an annual NEP value of 753 (\pm 112.7) g C m⁻² yr⁻¹. 381 382

384

Figure 6: Daily (24 h) integrated NEE in g CO₂ m⁻² day⁻¹ during the saltmarsh growing season 386 387 (top) and the dormant season (bottom) for days with data density > 85%. Purple lines indicate the mean daily integrated flux for each season (-10.54 and -1.64 g CO_2 m⁻² day⁻¹ 388 389 with an SD of 4.98 and 2.54 for growing and dormant respectively). A positive balance 390 indicates an integrated net flux of CO₂ from the Earth's surface to the atmosphere over the 391 24-hour period. Assuming the dormant season period spans one third of the year, we cautiously estimate an annual NEP value of 753 g C m⁻² yr⁻¹ (\pm weighted sum of SD of 5.9). 392 393 394

395 4. Discussion

397	At this temperate saltmarsh, seasonality had a significant effect on carbon and water flux.
398	Growing season net ecosystem productivity was five times greater than during the dormant
399	period. Seasonality in Australian marshes has not been previously reported in the scientific
400	literature, and assumptions were made that Australian saltmarshes do not exhibit the
401	growing and dormant phenology observed on other continents (Clarke and Jacoby, 1994).
402	Seasonality might be an overlooked important characteristic of this habitat and in addition
403	to affecting flux estimations, can have broader implications. For example, in the USA, the
404	saltmarsh greening up period was shown to be an important range-wide timing event for
405	migratory birds (Smith et al., 2020) with plant-growth metrics predicting the timing of nest
406	initiation for shorebirds. Saltmarshes in Australia are important roosting and feeding sites
407	along the East Asian Australasian Flyway, particularly waders, thus potentially a similar
408	relationship between migration timing and saltmarsh phenology could be occurring.
409	Seasonality also affects other significant ecosystem functions such as the bio-
410	geomorphological feedback between saltmarshes, coastal hydrodynamics and landscape
411	evolution (Reents et al., 2022).
412	
412 413	We derived the light-response and associated coefficients of light regulation of saltmarsh
412 413 414	We derived the light-response and associated coefficients of light regulation of saltmarsh NEE using the Michaelis Menten model (Chen et al., 2002). Quantum (or production)
412 413 414 415	We derived the light-response and associated coefficients of light regulation of saltmarsh NEE using the Michaelis Menten model (Chen et al., 2002). Quantum (or production) efficiency is the predominant input in remote sensing techniques to model productivity, and
412 413 414 415 416	We derived the light-response and associated coefficients of light regulation of saltmarsh NEE using the Michaelis Menten model (Chen et al., 2002). Quantum (or production) efficiency is the predominant input in remote sensing techniques to model productivity, and is specific to the biome (Hilker et al., 2010). While not directly comparable to leaf level
412 413 414 415 416 417	We derived the light-response and associated coefficients of light regulation of saltmarsh NEE using the Michaelis Menten model (Chen et al., 2002). Quantum (or production) efficiency is the predominant input in remote sensing techniques to model productivity, and is specific to the biome (Hilker et al., 2010). While not directly comparable to leaf level quantum efficiency measurements, the quantum efficiency (α) of the NEP light response
 412 413 414 415 416 417 418 	We derived the light-response and associated coefficients of light regulation of saltmarsh NEE using the Michaelis Menten model (Chen et al., 2002). Quantum (or production) efficiency is the predominant input in remote sensing techniques to model productivity, and is specific to the biome (Hilker et al., 2010). While not directly comparable to leaf level quantum efficiency measurements, the quantum efficiency (α) of the NEP light response curve was estimated from the slope of the Michaelis-Menten model to be 0.025 µmol CO ₂ J ⁻
 412 413 414 415 416 417 418 419 	We derived the light-response and associated coefficients of light regulation of saltmarsh NEE using the Michaelis Menten model (Chen et al., 2002). Quantum (or production) efficiency is the predominant input in remote sensing techniques to model productivity, and is specific to the biome (Hilker et al., 2010). While not directly comparable to leaf level quantum efficiency measurements, the quantum efficiency (α) of the NEP light response curve was estimated from the slope of the Michaelis-Menten model to be 0.025 µmol CO ₂ J ⁻ ¹ . The ecosystem reached light saturation at an insolation of 314 W m ⁻² , but daytime
 412 413 414 415 416 417 418 419 420 	We derived the light-response and associated coefficients of light regulation of saltmarsh NEE using the Michaelis Menten model (Chen et al., 2002). Quantum (or production) efficiency is the predominant input in remote sensing techniques to model productivity, and is specific to the biome (Hilker et al., 2010). While not directly comparable to leaf level quantum efficiency measurements, the quantum efficiency (α) of the NEP light response curve was estimated from the slope of the Michaelis-Menten model to be 0.025 µmol CO ₂ J ⁻ ¹ . The ecosystem reached light saturation at an insolation of 314 W m ⁻² , but daytime insolation was below this value more than 50% of the time suggesting that light might be a
 412 413 414 415 416 417 418 419 420 421 	We derived the light-response and associated coefficients of light regulation of saltmarsh NEE using the Michaelis Menten model (Chen et al., 2002). Quantum (or production) efficiency is the predominant input in remote sensing techniques to model productivity, and is specific to the biome (Hilker et al., 2010). While not directly comparable to leaf level quantum efficiency measurements, the quantum efficiency (α) of the NEP light response curve was estimated from the slope of the Michaelis-Menten model to be 0.025 µmol CO ₂ J ⁻ ¹ . The ecosystem reached light saturation at an insolation of 314 W m ⁻² , but daytime insolation was below this value more than 50% of the time suggesting that light might be a significant limiting factor to NEP at this marsh, especially during winter. The level of light
 412 413 414 415 416 417 418 419 420 421 422 	We derived the light-response and associated coefficients of light regulation of saltmarsh NEE using the Michaelis Menten model (Chen et al., 2002). Quantum (or production) efficiency is the predominant input in remote sensing techniques to model productivity, and is specific to the biome (Hilker et al., 2010). While not directly comparable to leaf level quantum efficiency measurements, the quantum efficiency (α) of the NEP light response curve was estimated from the slope of the Michaelis-Menten model to be 0.025 µmol CO ₂ J ⁻¹ ¹ . The ecosystem reached light saturation at an insolation of 314 W m ⁻² , but daytime insolation was below this value more than 50% of the time suggesting that light might be a significant limiting factor to NEP at this marsh, especially during winter. The level of light limitation we observed is an underestimation, due to the loss of high-quality EC data during
 412 413 414 415 416 417 418 419 420 421 422 423 	We derived the light-response and associated coefficients of light regulation of saltmarsh NEE using the Michaelis Menten model (Chen et al., 2002). Quantum (or production) efficiency is the predominant input in remote sensing techniques to model productivity, and is specific to the biome (Hilker et al., 2010). While not directly comparable to leaf level quantum efficiency measurements, the quantum efficiency (α) of the NEP light response curve was estimated from the slope of the Michaelis-Menten model to be 0.025 µmol CO ₂ J ⁻¹ . The ecosystem reached light saturation at an insolation of 314 W m ⁻² , but daytime insolation was below this value more than 50% of the time suggesting that light might be a significant limiting factor to NEP at this marsh, especially during winter. The level of light limitation we observed is an underestimation, due to the loss of high-quality EC data during periods of rain. The solar geometry at this latitude and the length of day result in an annual
 412 413 414 415 416 417 418 419 420 421 422 423 424 	We derived the light-response and associated coefficients of light regulation of saltmarsh NEE using the Michaelis Menten model (Chen et al., 2002). Quantum (or production) efficiency is the predominant input in remote sensing techniques to model productivity, and is specific to the biome (Hilker et al., 2010). While not directly comparable to leaf level quantum efficiency measurements, the quantum efficiency (α) of the NEP light response curve was estimated from the slope of the Michaelis-Menten model to be 0.025 µmol CO ₂ J ⁻ ¹ . The ecosystem reached light saturation at an insolation of 314 W m ⁻² , but daytime insolation was below this value more than 50% of the time suggesting that light might be a significant limiting factor to NEP at this marsh, especially during winter. The level of light limitation we observed is an underestimation, due to the loss of high-quality EC data during periods of rain. The solar geometry at this latitude and the length of day result in an annual average top of atmosphere SW radiation of 250 W m ⁻² , but clouds can strongly modulate
 412 413 414 415 416 417 418 419 420 421 422 423 424 425 	We derived the light-response and associated coefficients of light regulation of saltmarsh NEE using the Michaelis Menten model (Chen et al., 2002). Quantum (or production) efficiency is the predominant input in remote sensing techniques to model productivity, and is specific to the biome (Hilker et al., 2010). While not directly comparable to leaf level quantum efficiency measurements, the quantum efficiency (α) of the NEP light response curve was estimated from the slope of the Michaelis-Menten model to be 0.025 µmol CO ₂ J ⁻¹ . The ecosystem reached light saturation at an insolation of 314 W m ⁻² , but daytime insolation was below this value more than 50% of the time suggesting that light might be a significant limiting factor to NEP at this marsh, especially during winter. The level of light limitation we observed is an underestimation, due to the loss of high-quality EC data during periods of rain. The solar geometry at this latitude and the length of day result in an annual average top of atmosphere SW radiation of 250 W m ⁻² , but clouds can strongly modulate the SW radiation balance (SWCRE), and apart from the months of January and February

427

428	impact on NEP.
429	
430	Temperature is another forcing that significantly impacts NEE at this marsh, with an optimal
431	range for maximum NEP at 25.3°C (21.5°C-29.1°C). Data for Australian saltmarshes is not
432	available, but this optimal temperature response range is similar to that measured
433	experimentally in a saltmarsh species in an equivalent climate zone (e.g. Georgia,
434	(Giurgevich and Dunn, 1981)) and to the values hypothesised for the habitat from data
435	collected along the US Atlantic Coast, (Feher et al., 2017). The long-term average maximum
436	daytime temperature at this site is 19.2°C, which is cooler than the optimal range for NEE
437	suggesting temperature can be a significant limiting factor to productivity, especially during
438	the dormancy period where average monthly maximum temperatures are only 13.7 $^\circ$ C to
439	16.6°C (Bureau of Meteorology). During the growing season the average maximum
440	temperatures are within the range of optimal NEE (20.6°C to 23.1°C), although hot days
441	(>30°C) significantly depress NEE and depending on the year, can be common during
442	summer months (averaging 2-6 days per month).
443	
444	In saltmarshes, evapotranspiration occurs from plant mediated transpiration but also from
445	soil pores (which tend to be saturated), wetted leaves and open water. We observed
446	average evaporation rates of 2.48 mm day $^{-1}$ during the growing season and 0.97 mm day $^{-1}$
447	during the dormant season. Actual evapotranspiration in this region modelled using the
448	CMRSET algorithm is estimated to range between 0.6 and 3.2 mm day $^{-1}$ during winter and
449	summer respectively (McVicar et al., 2022); these values are consistent with our field
450	measurements. Overall, rainfall is in excess of the requirements for maintaining ET at this
451	site, although deficits can develop for short periods during the growing season.
452	Long term rainfall excess could be contributing to the complicated hydrology at this
453	location, where inundation is not strictly associated with tidal stage (data not shown).
454	Growing season ET rates are significantly higher than those of the dormant season, partly
455	due to the solar configuration in winter as opposed to summer, but also due to phenological
456	changes. A big leaf model estimation of evapotranspiration from saltmarshes in New South
457	Wales estimates ET to be highly sensitive to vegetation height, increasing by more than 1
458	mm day $^{-1}$ as vegetation height increases from 0.1 to 0.4 m (Hughes et al., 2001) and

site, averaging 15-17 days per month (Bureau of Meteorology) and could significantly

- transpiration in saltmarsh plants in the cold season has been shown to account for only 20%
 of the annual transpiration budget (Giurgevich and Dunn, 1981) following the same pattern
 as the seasonal distribution of productivity.
- 462

463 The rate of carbon uptake per unit of water loss (WUE) is a key ecosystem characteristic, 464 which is a result of a suite of physical and canopy physiological forcings, and has direct 465 implications for ecosystem function and global water and carbon cycling. Mean water use efficiency (WUEe) of this saltmarsh was estimated at 0.86 g C kg⁻¹ H₂O, which is markedly 466 467 lower than for grass dominated saltmarshes in China (2.9 g C kg⁻¹ H₂O, Xiao et al. (2013)) but 468 similar to the value for WUEe based on NEP and ET in mangroves (0.77 g C kg⁻¹ H_2O , Krauss 469 et al. (2022)). The chenopod Sarcocornia quinqueflora has been suspected to have higher 470 evapotranspiration rates than saltmarsh grasses by approx. 15% (Hughes et al., 2001), but 471 while Sarcocornia quinqueflora dominates at this site, the footprint is a mix of species and 472 the lower WUEe cannot be directly linked to the presence of Sarcocornia quinqueflora. 473 Furthermore, like most wetlands, the wetland surface is a mixed composition of emergent 474 vegetation, unsaturated soil and water bodies thus the spatial scale at which WUEe is 475 determined encompasses both the canopy (Ec) as well as any open water present in the footprint. Transpiration is predicted to account for only 55% of ET in these systems (Hughes 476 477 et al., 2001), which is an Ec to ET ratio similar to that of mangroves (Krauss et al., 2022) but significantly lower than terrestrial forests where more than 90% of ET can be attributed to 478 479 transpiration. Thus, regional variations in WUEe can be attributed to multiple forcings that 480 form complex spatiotemporal patterns.

481

482 Saltmarshes are considered among the most productive ecosystems on Earth with an estimated global NEP of 634 Tg C y⁻¹ (Fagherazzi et al., 2013). Productivity of southern 483 Australian marshes was previously estimated at 0.8 kg m⁻² y⁻¹ by repeated measurements of 484 above ground standing crops (Clarke and Jacoby, 1994), which is remarkably similar to the 485 486 values reported here, where we extrapolate an approximate annual mean of 0.75 kg C m⁻² y⁻¹ 487 ¹. Similar studies on saltmarshes in France report lower productivity than the marshes at French Island (-483 g C m⁻² y⁻¹, (Mayen et al., 2024)) but our values are within the range 488 489 reported for mid-latitude saltmarsh sites in the USA (-775 g C m⁻² y⁻¹, (Wang et al., 2016)) 490 and China (-668 g C m⁻² γ^{-1} , (Xiao et al., 2013)). It is clear that productivity across climate

491	zones and biogeographic regions varies widely with some studies even reporting net
492	emissions over an annual period from some marshes and a global average estimated
493	between -382 (Alongi, 2020) and -1,585 g C m $^{\rm 2}$ y $^{\rm 1}$ (Chmura et al., 2003), albeit based on a
494	small subset of studies. An analysis of GPP across latitudes in the USA show that warmer
495	sites (including mangrove wetlands in southern USA) had significantly higher GPP than mid-
496	latitude saltmarshes such as the one on French Island (Feagin et al., 2020). Mangroves have
497	higher NEE than saltmarshes, estimated by (Krauss et al., 2022) to average 1200 g C m $^{-2}$ y $^{-1}.$
498	The data presented here is the exchange of carbon between the land surface and the
499	atmosphere, but saltmarshes, like other marine connected communities, exchange carbon
500	also through dissolved carbon pathways, which can be significant (Cai, 2011). Thus, the
501	fluxes presented here do not constitute the entire carbon budget of this ecosystem.
502	
503	5. Conclusions
504	
505	The response of the French Island saltmarsh to environmental drivers is indicative of the
506	complex interactions determining saltmarsh productivity. While the overall carbon
507	sequestration rate we measured was in the range of other temperate saltmarsh estimates
508	(ca. 750 g C m $^{-2}$ y $^{-1}$), the unique long-term, high-resolution record enabled us to derive
509	temperature, VPD and light response functions, thus formulating equations that describe
510	how climate-change sensitive parameters such as temperature, relative humidity, and cloud
511	cover, affect CO_2 uptake, respiration and evapotranspiration. The marsh operated as a CO_2
512	sink throughout the various canopy phenological phases, but during the dormant period,
513	CO_2 uptake was less than 25% that of the growing season. Seasonality has not been
514	previously considered in Australian saltmarshes and it should not be overlooked when
515	estimating saltmarsh carbon budgets.
516	
517	Competing interests
518	
519 520	The contact author has declared that none of the authors has any competing interests.
521	Acknowledgments
522	

- 523 The work was carried out with the permission of Parks Victoria (Permit 10008684). We thank
- 524 Phil and Yuko Bock for logistic support and accommodation on French Island. We thank
- 525 Leigh Burgess, Kiri Mason and Ian McHugh for technical support and the Australian OzFlux
- 526 community for ongoing collaboration. This work was funded by an Australian Research
- 527 Council Discovery Award to RR and ED (DP220102873) as well as a Monash University
- 528 Networks of Excellence award to RR.
- 529
- 530 Data Availability
- 531 Data used for this analysis is available at https://figshare.com/s/ba62aafd1a4049248a08
- 532 (note that this is a temporary private link to an embargoed dataset which will be replaced
- 533 with a publicly available DOI upon publication).
- 534
- 535 Author contribution
- 536 RR conceptualised the study, acquired funding, prepared the manuscript, designed and
- 537 carried out the field campaign, and performed the analysis. ED acquired funding, developed
- 538 methodology and prepared the manuscript. AG developed methodology and prepared the
- 539 manuscript. TA, EJVH, HR and MP were involved in the field investigation and administration
- 540 of the project and provided edits on the manuscript.
- 541
- 542 References
- 543
- 544 Adam, P.: Saltmarsh Ecology, Cambridge University Press, 1990.
- Adam, P.: Morecambe Bay saltmarshes: 25 years of change, in: British Saltmarshes, Forrest
 Text, Cardigan, UK, 81–107, 2000.
- 547 Adam, P.: Saltmarshes in a time of change, Environ. Conserv., 29, 39–61, https://doi.org/10.1017/S0376802002000048_2002
- 548
 https://doi.org/10.1017/S0376892902000048, 2002.
- Alongi, D. M.: Carbon balance in salt marsh and mangrove ecosystems: A global synthesis, J.
 Mar. Sci. Eng., 8, 767, 2020.
- 551 Artigas, F., Shin, J. Y., Hobble, C., Marti-Donati, A., Schäfer, K. V. R., and Pechmann, I.:
- 552 Long term carbon storage potential and CO₂ sink strength of a restored salt marsh in New
- Jersey, Agric. For. Meteorol., 200, 313–321, https://doi.org/10.1016/j.agrformet.2014.09.012,
 2015.

- 555 Baldocchi, D. D.: Assessing the eddy covariance technique for evaluating carbon dioxide
- exchange rates of ecosystems: past, present and future, Glob. Change Biol., 9, 479–492,
- 557 https://doi.org/10.1046/j.1365-2486.2003.00629.x, 2003.
- 558 Borges, A. V., Schiettecatte, L.-S., Abril, G., Delille, B., and Gazeau, F.: Carbon dioxide in
- 559 European coastal waters, Trace Gases Eur. Coast. Zone, 70, 375–387,
- 560 https://doi.org/10.1016/j.ecss.2006.05.046, 2006.
- 561 Cai, W.-J.: Estuarine and coastal ocean carbon paradox: CO₂ sinks or sites of terrestrial
- 562 carbon incineration?, Annu. Rev. Mar. Sci., 3, 123–145, https://doi.org/10.1146/annurev-
- 563 marine-120709-142723, 2011.
- 564 Chen, J., Falk, M., Euskirchen, E., Paw U, K. T., Suchanek, T. H., Ustin, S. L., Bond, B. J.,
- 565 Brosofske, K. D., Phillips, N., and Bi, R.: Biophysical controls of carbon flows in three
- 566 successional Douglas-fir stands based on eddy-covariance measurements, Tree Physiol., 22,
- 567 169–177, https://doi.org/10.1093/treephys/22.2-3.169, 2002.
- 568 Chmura, G. L., Anisfeld, S. C., Cahoon, D. R., and Lynch, J. C.: Global carbon sequestration
- 569 in tidal, saline wetland soils, Glob. Biogeochem. Cycles, 17,
- 570 https://doi.org/10.1029/2002GB001917, 2003.
- 571 Clarke, P., J. and Jacoby, C. A.: Biomass and above-ground productivity of salt-marsh plants
 572 in South-eastern Australia, Aust. J. Mar. Freshw. Res., 45, 1521–1528, 1994.
- 573 Duarte, C. M.: Reviews and syntheses: Hidden forests, the role of vegetated coastal habitats
- in the ocean carbon budget, Biogeosciences, 14, 301–310, https://doi.org/10.5194/bg-14-3012017, 2017.
- 576 Erickson, J. E., Peresta, G., Montovan, K. J., and Drake, B. G.: Direct and indirect effects of 577 elevated atmospheric CO₂ on net ecosystem production in a Chesapeake Bay tidal wetland,
- 578 Glob. Change Biol., 19, 3368–3378, 2013.
- 579 Fagherazzi, S., Wiberg, P. L., Temmerman, S., Struyf, E., Zhao, Y., and Raymond, P. A.:
- 580 Fluxes of water, sediments, and biogeochemical compounds in salt marshes, Ecol. Process.,
- 581 2, 3, https://doi.org/10.1186/2192-1709-2-3, 2013.
- 582 Feagin, R. A., Forbrich, I., Huff, T. P., Barr, J. G., Ruiz-Plancarte, J., Fuentes, J. D., Najjar,
- 583 R. G., Vargas, R., Vázquez-Lule, A., Windham-Myers, L., Kroeger, K. D., Ward, E. J.,
- 584 Moore, G. W., Leclerc, M., Krauss, K. W., Stagg, C. L., Alber, M., Knox, S. H., Schäfer, K.
- 585 V. R., Bianchi, T. S., Hutchings, J. A., Nahrawi, H., Noormets, A., Mitra, B., Jaimes, A.,
- 586 Hinson, A. L., Bergamaschi, B., King, J. S., and Miao, G.: Tidal wetland gross primary
- production across the continental United States, 2000–2019, Glob. Biogeochem. Cycles, 34,
 e2019GB006349, https://doi.org/10.1029/2019GB006349, 2020.
- 589 Feher, L. C., Osland, M. J., Griffith, K. T., Grace, J. B., Howard, R. J., Stagg, C. L.,
- 590 Enwright, N. M., Krauss, K. W., Gabler, C. A., Day, R. H., and Rogers, K.: Linear and
- 591 nonlinear effects of temperature and precipitation on ecosystem properties in tidal saline
- 592 wetlands, Ecosphere, 8, e01956, https://doi.org/10.1002/ecs2.1956, 2017.
- 593 Gedan, K. B., Silliman, B. R., and Bertness, M. D.: Centuries of human-driven change in salt
- 594 marsh ecosystems, Annu. Rev. Mar. Sci., 1, 117–141,
- 595 https://doi.org/10.1146/annurev.marine.010908.163930, 2009.

- 596 Ghosh, S. and Mishra, D. R.: Analyzing the long-term phenological trends of salt marsh 597 ecosystem across coastal Louisiana, Remote Sens., 9, https://doi.org/10.3390/rs9121340,
- 598 2017.
- 599 Giurgevich, J. R. and Dunn, E. L.: A comparative analysis of the CO₂ and water vapor
- 600 responses of two Spartina species from Georgia coastal marshes, Estuar. Coast. Shelf Sci.,
- 601 12, 561–568, https://doi.org/10.1016/S0302-3524(81)80082-5, 1981.
- 602 Hilker, T., Hall, F. G., Coops, N. C., Lyapustin, A., Wang, Y., Nesic, Z., Grant, N., Black, T.
- 603 A., Wulder, M. A., Kljun, N., Hopkinson, C., and Chasmer, L.: Remote sensing of
- 604 photosynthetic light-use efficiency across two forested biomes: Spatial scaling, Remote Sens.
- 605 Environ., 114, 2863–2874, https://doi.org/10.1016/j.rse.2010.07.004, 2010.
- Hill, A. C. and Vargas, R.: Methane and carbon dioxide fluxes in a temperate tidal salt marsh:
 comparisons between plot and ecosystem measurements, J. Geophys. Res. Biogeosciences,
 2022 JC00(042 June 1/1) (10.1020/2022JC00(042 2022))
- 608 127, e2022JG006943, https://doi.org/10.1029/2022JG006943, 2022.
- Howe, A. J., Rodríguez, J. F., Spencer, J., MacFarlane, G. R., and Saintilan, N.: Response of
 estuarine wetlands to reinstatement of tidal flows, Mar. Freshw. Res., 61, 702–713, 2010.
- Hughes, C. E., Kalma, J. D., Binning, P., Willgoose, G. R., and Vertzonis, M.: Estimating
 evapotranspiration for a temperate salt marsh, Newcastle, Australia, Hydrol. Process., 15,
 957, 975, https://doi.org/10.1002/hym.189, 2001
- 613 957–975, https://doi.org/10.1002/hyp.189, 2001.

Huxham, M., Whitlock, D., Githaiga, M., and Dencer-Brown, A.: Carbon in the coastal
seascape: how interactions between mangrove forests, seagrass meadows and tidal marshes
influence carbon storage, Curr. For. Rep., 4, 101–110, https://doi.org/10.1007/s40725-0180077-4, 2018.

- Kathilankal, J. C., Mozdzer, T. J., Fuentes, J. D., D'Odorico, P., McGlathery, K. J., and
 Zieman, J. C.: Tidal influences on carbon assimilation by a salt marsh, Environ. Res. Lett., 3,
 044010, https://doi.org/10.1088/1748-9326/3/4/044010, 2008.
- 621 Kljun, N., Calanca, P., Rotach, M. W., and Schmid, H. P.: A simple two-dimensional
- 622 parameterisation for Flux Footprint Prediction (FFP), Geosci Model Dev, 8, 3695–3713,
- 623 https://doi.org/10.5194/gmd-8-3695-2015, 2015.
- 624 Krauss, K. W., Lovelock, C. E., Chen, L., Berger, U., Ball, M. C., Reef, R., Peters, R.,
- 625 Bowen, H., Vovides, A. G., Ward, E. J., and others: Mangroves provide blue carbon
- 626 ecological value at a low freshwater cost, Sci. Rep., 12, https-doi, 2022.
- 627 Lasslop, G., Reichstein, M., Papale, D., Richardson, A. D., Arneth, A., BARR, A., STOY, P.,
- and WOHLFAHRT, G.: Separation of net ecosystem exchange into assimilation and
- 629 respiration using a light response curve approach: critical issues and global evaluation, Glob.
- 630 Change Biol., 16, 187–208, https://doi.org/10.1111/j.1365-2486.2009.02041.x, 2010.
- 631 Lu, W., Xiao, J., Liu, F., Zhang, Y., Liu, C., and Lin, G.: Contrasting ecosystem CO₂ fluxes
- of inland and coastal wetlands: a meta-analysis of eddy covariance data, Glob. Change Biol.,
 23, 1180–1198, https://doi.org/10.1111/gcb.13424, 2017.
- 634 Mayen, J., Polsenaere, P., Lamaud, É., Arnaud, M., Kostyrka, P., Bonnefond, J.-M., Geairon,
- 635 P., Gernigon, J., Chassagne, R., and Lacoue-Labarthe, T.: Atmospheric CO₂ exchanges

- 636 measured by eddy covariance over a temperate salt marsh and influence of environmental
- 637 controlling factors, Biogeosciences, 21, 993–1016, 2024.
- 638 McLeod, E., Chmura, G. L., Bouillon, S., Salm, R., Björk, M., Duarte, C. M., Lovelock, C.
- 639 E., Schlesinger, W. H., and Silliman, B. R.: A blueprint for blue carbon: toward an improved
- 640 understanding of the role of vegetated coastal habitats in sequestering CO₂, Front. Ecol.
- 641 Environ., 9, 552–560, https://doi.org/10.1890/110004, 2011.
- 642 Mcowen, C. J., Weatherdon, L. V., Bochove, J.-W. V., Sullivan, E., Blyth, S., Zockler, C.,
- 643 Stanwell-Smith, D., Kingston, N., Martin, C. S., Spalding, M., and Fletcher, S.: A global map
- of saltmarshes, Biodivers. Data J., 5, e11764, https://doi.org/10.3897/BDJ.5.e11764, 2017.
- McVicar, T., Vleeshouwer, J., Van Niel, T., Guerschman, J., and Peña-Arancibia, J. L.:
 Actual Evapotranspiration for Australia using CMRSET algorithm. Version 1.0, 2022.
- Mitsch, W. J. and Gosselink, J. G.: The value of wetlands: importance of scale and landscape
 setting, Ecol. Econ., 35, 25–33, https://doi.org/10.1016/S0921-8009(00)00165-8, 2000.
- 649 Moffett, K. B., Wolf, A., Berry, J. A., and Gorelick, S. M.: Salt marsh-atmosphere exchange
- of energy, water vapor, and carbon dioxide: Effects of tidal flooding and biophysical controls,
 Water Resour. Res., 46, 2010.
- Nahrawi, H., Leclerc, M. Y., Pennings, S., Zhang, G., Singh, N., and Pahari, R.: Impact of
 tidal inundation on the net ecosystem exchange in daytime conditions in a salt marsh, Agric.
- For. Meteorol., 294, 108133, https://doi.org/10.1016/j.agrformet.2020.108133, 2020.
- Navarro, A., Young, M., Macreadie, P. I., Nicholson, E., and Ierodiaconou, D.: Mangrove
 and saltmarsh distribution mapping and land cover change assessment for south-eastern
- 657 Australia from 1991 to 2015, Remote Sens., 13, https://doi.org/10.3390/rs13081450, 2021.
- Otani, S. and Endo, T.: CO₂ flux in tidal flats and salt marshes, Blue Carbon Shallow Coast.
 Ecosyst. Carbon Dyn. Policy Implement., 223–250, 2019.
- 660 Reents, S., Möller, I., Evans, B. R., Schoutens, K., Jensen, K., Paul, M., Bouma, T. J.,
- 661 Temmerman, S., Lustig, J., Kudella, M., and Nolte, S.: Species-specific and seasonal
- differences in the resistance of salt-marsh vegetation to wave impact, Front. Mar. Sci., 9,2022.
- 664 Schäfer, K. V. R., Duman, T., Tomasicchio, K., Tripathee, R., and Sturtevant, C.: Carbon
- dioxide fluxes of temperate urban wetlands with different restoration history, Agric. For.
- 666 Meteorol., 275, 223–232, https://doi.org/10.1016/j.agrformet.2019.05.026, 2019.
- 667 Seyfferth, A. L., Bothfeld, F., Vargas, R., Stuckey, J. W., Wang, J., Kearns, K., Michael, H.
- 668 A., Guimond, J., Yu, X., and Sparks, D. L.: Spatial and temporal heterogeneity of
- geochemical controls on carbon cycling in a tidal salt marsh, Geochim. Cosmochim. Acta,
 282, 1–18, 2020.
- 671 Shepard, C. C., Crain, C. M., and Beck, M. W.: The protective role of coastal marshes: a
- 672 systematic review and meta-analysis, PLoS ONE, 6, e27374,
- 673 https://doi.org/10.1371/journal.pone.0027374, 2011.

- 674 Smith, J. A. M., Regan, K., Cooper, N. W., Johnson, L., Olson, E., Green, A., Tash, J., Evers,
- 675 D. C., and Marra, P. P.: A green wave of saltmarsh productivity predicts the timing of the
- annual cycle in a long-distance migratory shorebird, Sci. Rep., 10, 20658, 676
- https://doi.org/10.1038/s41598-020-77784-7, 2020. 677
- 678 Vázquez-Lule, A. and Vargas, R.: Biophysical drivers of net ecosystem and methane
- 679 exchange across phenological phases in a tidal salt marsh, Agric. For. Meteorol., 300,
- 680 108309, https://doi.org/10.1016/j.agrformet.2020.108309, 2021.
- 681 Wang, Z. A., Kroeger, K. D., Ganju, N. K., Gonneea, M. E., and Chu, S. N.: Intertidal salt
- 682 marshes as an important source of inorganic carbon to the coastal ocean, Limnol. Oceanogr., 683
- 61, 1916–1931, https://doi.org/10.1002/lno.10347, 2016.
- 684 Ward, N. D., Megonigal, J. P., Bond-Lamberty, B., Bailey, V. L., Butman, D., Canuel, E. A., 685 Diefenderfer, H., Ganju, N. K., Goñi, M. A., and Graham, E. B.: Representing the function 686 and sensitivity of coastal interfaces in Earth system models, Nat. Commun., 11, 2458, 2020.
- 687 Wei, S., Han, G., Jia, X., Song, W., Chu, X., He, W., Xia, J., and Wu, H.: Tidal effects on 688 ecosystem CO2 exchange at multiple timescales in a salt marsh in the Yellow River Delta, 689 Estuar. Coast. Shelf Sci., 238, 106727, 2020.
- 690 Whitfield, A. K.: The role of seagrass meadows, mangrove forests, salt marshes and reed
- 691 beds as nursery areas and food sources for fishes in estuaries, Rev. Fish Biol. Fish., 27, 75-110, https://doi.org/10.1007/s11160-016-9454-x, 2017. 692
- Xiao, J., Sun, G., Chen, J., Chen, H., Chen, S., Dong, G., Gao, S., Guo, H., Guo, J., Han, S., 693
- Kato, T., Li, Y., Lin, G., Lu, W., Ma, M., McNulty, S., Shao, C., Wang, X., Xie, X., Zhang, 694
- 695 X., Zhang, Z., Zhao, B., Zhou, G., and Zhou, J.: Carbon fluxes, evapotranspiration, and water
- use efficiency of terrestrial ecosystems in China, Agric. For. Meteorol., 182-183, 76-90, 696
- 697 https://doi.org/10.1016/j.agrformet.2013.08.007, 2013.